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oven). The advantage in computation can be illustrated by
a simple comparison of the computational efforts of theseDetermination of the equivalent internal heat source from surface

temperature measurements in microwave processing of materials two approaches. Based on an implicit 3D finite difference
is formulated as an inverse source problem of a nonlinear diffusion scheme and Gaussian elimination solver for matrices, a
equation. The versatile generalized pulse-spectrum technique rough estimate of the asymptotic number of floating point(GPST) inversion algorithm with the incorporation of multi-level

arithmetic operations (FLO) count for the initial-boundarygrid method and hierarchical parallelism is developed for solving
this type of inverse problems. Development of a simple 2D code value problem of seven PDEs is FLOdi 5 O(mTYB2/2),
has been completed. Numerical simulations are carried out to test where m 5 7 is the number of PDEs, T 5 O(102) is the
the feasibility and capability of this improved GPST without the real number of time steps needed in simulation, Y 5 O(y3) is
measurement data. It is found that this new inversion algorithm

the total number of grid points for the microwave ovennot only does produce very good results but also is much more
containing the sample, y is the number of grid points inefficient and stable than its standard version. Q 1997 Academic Press

one direction, B 5 O(mY 2/3) is the bandwidth of the ma-
trix. Hence FLOdi 5 O(1.7 3 104y7). Similarly, based on

INTRODUCTION the standard generalized pulse-spectrum technique
(GPST) without any refinement [5], the asymptotic

Microwave heating is used generally for changing mate- FLO count for the inverse source problem of one PDE is
rial characteristics, separating and bonding different mate- FLOinv 5 O(Nk3Z3/3), where k 5 3 is the number of
rials, and processing a wide variety of ceramic materials. unknown parameters of heat source, N 5 O(10) is the
As a matter of fact, microwave processing of ceramics is

number of iterations needed for the convergence of GPST,one of the most important modern industrial processes [18,
Z 5 O(z3) is the total number of grid points for the sample16, 1]. In microwave processing, high thermal stresses often
only, z is the number of grid points in one direction. Hencecause the undesirable cracking of samples. Hence knowl-
FLOinv 5 O(90z9). The approximate condition for the pref-edge of temperature distribution in the sample is crucial
erence of solivng the inverse source problem of one PDEin overcoming this type of problems. The entire physical
than the initial-boundary value problem of a system ofphenomenon of microwave heating can be described by
seven PDEs is FLOinv , FLOdi ; i.e., z9 , 188y7. In general,the solution of the initial-boundary value problem of the
y 5 O(3z) and then the condition becomes z , 641 whichMaxwell’s equations coupled with a nonlinear diffusion
is more than enough, for in practice, z 5 O(102).equation, but this system of seven partial differential equa-

Up to the present, very little research has been done fortions is just too costly to solve in general. Here we propose
solving the inverse source problems of diffusion equations.to simplify this problem by first representing the effects of
On the other hand, much research has been done for solv-the microwave energy loss in the sample with an unknown
ing the inverse coefficient problems of diffusion equationsequivalent internal heat source and then solving an inverse
[4, 3, 6, 12, 11, 7, 14] and for the inverse boundary-conditionsource problem of the nonlinear diffusion equation from
problems of diffusion equations [2, 10]. Here the versatilethe surface temperature to determine this unknown inter-
GPST inversion algorithm [6, 7, 12, 13], with the novelnal heat source. These surface temperature data can be
incorporation of the multilevel grid method [8, 9, 20], andobtained by using the independent infrared sensors. In
the hierarchical parallelism [5, 9] is developed for solvingother words, what we are proposing here is that one solves
this type of inverse source problem. For simplicity, herean inverse source problem of one PDE in a much smaller
only a 2D code based on the polar coordinate is developed.domain (including the sample only), instead of the original
Due to the lack of access to multiprocessor computers,initial-boundary value problem of seven PDEs in a much

larger domain (inclusing both sample and microwave numerical simulations are carried out only on a single proc-
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essor computer to test the feasibility and capability of this where in the finite range of T (0 to 14008C), Q(x, T) is a
simple quadratic function of T [17] and can be approxi-improved GPST inversion algorithm without the real mea-

surement data. It is found that this new inversion algorithm mated amply by the cubic polynomials,
not only produces very good results, but also it is much
more efficient and stable than its standard version, even Q(x, T) 5 c1(x)T 1 c2(x)T 2 1 c3(x)T 3. (5)
on a single processor computer. We cannot compare our
results with others, because through an extensive literature Next in addition to the process of microwave heating, the
search we are not able to find any. surface temperature of the sample is measured indepen-

dently at few locations by infrared sensers to provide theGOVERNING EQUATIONS AND
auxiliary conditionMATHEMATICAL FORMULATION

The partial differential equations governing the micro- T(xp , ty) 5 TS(xp , ty), xp [ ­V0 ;
(6)wave heating of ceramic materials are

p 5 1, 2, 3, ..., P; y 5 1, 2, 3, ....

= 3 = 3 E 2 e0­
2«(x, T)E/­t2 1 e0­s(x, T)E/­t 5 0,

Now, solving the initial-boundary value problem of Eqs.
x [ V, 0 , t , y, = ? [k(x, T)=T] 2 Cr(x, T)­T/­t

(1) (1)–(3) is replaced by first solving the inverse source prob-
1 s(x, T)E ? E*/2 5 0, lem of Eqs. (2)–(6) to obtain the equivalent internal heat

source Q and then solving the initial-boundary value prob-x [ V0 , V, 0 , t , y,
lem of Eqs. (2)–(5) to obtain the temperature distribution
of the sample.with the appropriate initial-boundary conditions for E(x,

t) on ­V and ­V0 and the convective-radiative boundary
GENERALIZED PULSE-SPECTRUMcondition for T(x, t) [15]

TECHNIQUE (GPST)
k(x, T)­T/­n 5 h(Tr 2 T) 1 s(aT 4

r 2 bT 4),
(2) The GPST iterative inversion algorithm begins by setting

x [ ­V0 , 0 , t , y,

Tn11(x, t) 5 Tn(x, t) 1 dTn(x, t),and the initial condition for T,
cl,n11(x) 5 cl,n(x) 1 dcl,n(x), (7)

T(x, 0) 5 Tr(x), x [ V0 1 ­V0 , (3)
l 5 1, 2, 3; n 5 0, 1, 2, 3 ...,

where V is the interior of a microwave oven with boundary
where for convergence the d-terms are smaller than their­V, V0 is the ceramic sample with boundary ­V0 , ­ ?/­n is
corresponding non-d-terms in some norms and the cl,0’sthe derivative normal to ­V0 , E(x, t) is the electric field,
are the initial guesses for the corresponding unknown cl’s.T(x, t) is the temperature distribution in the sample, e0 is

Upon substituting (7) into Eqs. (2)–(5) and neglectingthe free space permeability, «(x, T) is the permittivity, s(x,
terms of O(d2) and higher, one obtains the same nonlinearT) is the conductivity, k(x, T) is the thermal conductivity
diffusion equation for Tn as that for T, except with theof the sample, the constant C is the specific heat of the
additional subscript ‘‘n,’’sample, r(x, T) is the density of the sample, h is the convec-

tive unit surface conductance of the sample, s is the Stefan–
Boltzman constant, and b and a are the emissivity of the = ? [kn=Tn] 2 Crn­Tn/­t 1 (c1,nTn 1 c2,nT 2

n 1 c3,nT 3
n) 5 0,

surface of the sample and that of the free space, respec-
x [ V0 , 0 , t , y, n 5 0, 1, 2, 3, ..., (8)tively.

Since the task of solving Eqs. (1)–(3) is either extremely kn­Tn/­n 5 h(Tr 2 Tn) 1 s(aT 4
r 2 bT 4

n),
difficult or impossible in general, here we propose to sim-

x [ ­V0 , 0 , t , y, (9)plify the problem by first eliminating the Maxwell’s equa-
tion in (1) and replacing the electromagnetic power dissipa-

andtion term sE ? E*/2 in the nonlinear diffusion equation by
an unknown equivalent internal heat source Q(x, T), i.e.,
Eq. (1) is replaced by Tn(x, 0) 5 Tr(x), x [ V0 1 ­V0 , (10)

= ? [k(x, T)=T] 2 Cr(x, T)­T/­t 1 Q(x, T) 5 0,
(4) where kn ; k(x, Tn) and rn ; r(x, Tn), and a linear diffusion

equation for dTn ,x [ V0 , 0 , t , y,



376 CHEN AND CHEN

= ? [kn=dTn] 1 = ? (dTn=Tn­kn/­Tn) 2 Crn­dTn/­t of Dr, J increments of Du, and radius R (Fig. 1), a simple
explicit finite difference scheme based on the integral forms

2 C(­rn/­Tn)(­Tn/­t)dTn 1 (c1,n 1 2c2,nTn 1 3c3,nT 2
n)dTn of the divergence and gradient operators and uniform time

step Dt gives the discretization of (8)–(10) as
5 2Tndc1,n 2 T 2

ndc2,n 2 T 3
ndc3,n , x [ V0 ,

0 , t , y, n 5 0, 1, 2, 3, ..., (11) T m11
ni, j 5 (Lm

ni, j1 1 Lm
ni, j2 1 Lm

ni, j3 1 Lm
ni, j4 1 Am

ni, j1

kn­dTn/­n 5 2[h 1 4sbT 3
n 1 (­kn/­Tn)(­Tn/­n)]dTn , 1 Am

ni, j2) Dt/[iC(Dr)2 Durm
ni, j],

(16)
x [ ­V0 , 0 , t , y, (12) i 5 2, 3, ..., I; j 5 1, 2, 3, ..., J ⇔ 0;

m 5 0, 1, 2, 3, ..., M; n 5 0, 1, 2, 3, ...,and

wheredTn(x, 0) 5 0, x [ V0 1 ­V0 . (13)

Lm
ni, j1 ; (km

ni, j21 1 km
ni, j)(T m

ni, j21 2 T m
ni, j)/2i Du,By using the method of Green’s function, the solution

of Eqs. (11)–(13) can be expressed in the integral relation
Lm

ni, j2 ; (km
ni11, j 1 km

ni, j)(T m
ni11, j 2 T m

ni, j)(i 1 As) Du,

Lm
ni, j3 ; (km

ni, j11 1 km
ni, j)(T m

ni, j11 2 T m
ni, j)/(2i Du),

(17)

Ey

0
E

V0

Gn(x, t; x9, t9)(dc1,nTn 1 dc2,nT 2
n 1 dc3,nT 3

n) dx9 dt9

(14) Lm
ni, j4 ; (km

ni21, j 1 km
ni, j)(T m

ni21, j 2 T m
ni, j)(2i 1 As) Du,

5 Tn 2 Tn11 , n 5 0, 1, 2, 3, ...,
Am

ni, j1 ; iC Du(Dr)2rm
ni, jTm

ni, j/Dt, Am
ni, j2 ; i (Dr)2DuQm

ni, j ;

where Gn(x, t; x9, t9) is the appropriate Green’s function
km

nI11, j(2T m
nI21, j 1 4T m

nI, j 2 3T m
nI11, j)/2 Dr 5 h(T m

nI11, j 2 TrI11, j)of Eqs. (11)–(13).
For speeding up the convergence and eliminating the 1 s[b(T m

nI11, j)4 2 aT 4
rI11, j], j 5 1, 2, 3, ..., J ⇔ 0;

unknown Tn11 in (14), one can first set (x, t) to (xp , ty),
p 5 1, 2, 3, ..., P; y 5 1, 2, 3, ..., Y, where the surface m 5 1, 2, 3, ..., M; n 5 0, 1, 2, 3, ...,
temperature TS is measured at the pth location and the
yth time step, and then replace Tn11(xp , ty) by the measured where T m

nI11, j can be solved by using the Newton’s method;
temperature TS(xp , ty). Hence the integral form (14) is
reduced to a system of Fredholm integral equations of the

P0
ni, j 5 Tri, j , i 5 1, 2, 3, ..., I 1 1;

(18)first kind for the unknowns dc1,n , dc2,n , and dc3,n ,

j 5 1, 2, 3, ..., J ⇔ 0; n 5 0, 1, 2, 3, ....

Ey

0
E

V0

Gn(xp , ty ; x9, t9)(dc1,nTn 1 dc2,nT 2
n 1 dc3,nT 3

n) dx9 dt9
To satisfy the required stability condition of the above

explicit finite difference scheme at the center of the circular5 Tn(xp , ty) 2 TS(xp , ty), p 5 1, 2, 3, ..., P; (15)
cylindrical coordinate, where i 5 1, the small size of the

y 5 1, 2, 3, ..., Y; n 5 0, 1, 2, 3, .... triangular zones requires Dt to be very small. This difficulty
can be overcome by combining the J triangular zones into
one single circular zone so that the integration path is theTheoretically, Eqs. (7)–(10) and (15) form the basic
circle centered at i 5 1 with radius Dr/2. In this way, Eq.structure of each GPST iteration. Each cycle of GPST
(16) becomesiteration consists of a direct half-cycle in which (8)–(10)

are solved and an inverse half-cycle in which (7) and (15)
are solved. However, in practice it is extremely difficult to T m11

n1 5 T m
n1 1 DtQm

n1/Crm
n1

find the Green’s function and then to solve the system of
integral equations (15). On the other hand, one can first 1 2 Dt[JC(Dr)2rm

n1]21 OJ

j51
(km

n1 1 km
n2, j)(T m

n2, j 2 T m
n1),

discretize (11)–(13) the same way as for (8)–(10) to obtain
a linear algebraic relation, and then one utilizes the same

m 5 0, 1, 2, 3, ..., M; n 5 0, 1, 2, 3, .... (19)method from above to transform the derived linear alge-
braic relation into a system of linear algebraic equations
for the unknowns dc1,n , dc2,n , and dc3,n . Similarly, the finite difference approximations of Eqs.

(11)–(13) areOn a uniform circular cylindrical grid with I increments
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FIG. 3. Computed values of c1(x) for Example 1.

FIG. 1. The circular cyclindrical grid.

dc1,ni, j(T m11
ni, j 1 T m

ni, j) 1 dc2,ni, j[(Tm11
ni, j )2

1 (T m
ni, j)2] 1 dc3,ni, j[(T m11

ni, j )3 1 (T m
ni, j)3]

5 [i(Dr)2 Du]21h2M m11/2
ni, j 1 2Rm11/2

ni, j

2 [dLm11
ni, j1 1 dLm11

ni, j2 1 dLm11
ni, j3 1 dLm11

ni, j4

1 dN m11
ni, j1 1 dN m11

ni, j2 1 dN m11
ni, j3 1 dN m11

ni, j4 (20)

1 dLm
ni, j1 1 dLm

ni, j2 1 dLm
ni, j3 1 dLm

ni, j4

1 dN m
ni, j1 1 dN m

ni, j2 1 dN m
ni, j3 1 dN m

ni, j4]j,

i 5 2, 3, ..., I; j 5 1, 2, 3, ..., J ⇔ 0;

FIG. 4. Exact values of c1(x) for Example 1.m 5 0, 1, 2, ..., M; n 5 0, 1, 2, 3, ...,

FIG. 5. Initial guess of c2(x) for Example 1.FIG. 2. Initial guess of c1(x) for Example 1.
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FIG. 8. Initial guess of c3(x) for Example 1.

FIG. 6. Computed values of c2(x) for Example 1.

dNm
ni, j3 ; 2[(Um

ni, j11 1 Um
ni, j)(Tm

ni, j11 2 Tm
ni, j)(dTm

ni, j11

where dLm
ni, jl , l 5 1, 2, 3, 4, equals Lm

ni, jl’s with T m
ni, j’s being

1 dTm
ni, j)]/4i Du,replaced by dT m

ni, j’s,

dNm
ni, j4 ; 2[(Um

ni21, j 1 Um
ni, j)(Tm

ni21, j 2 Tm
ni, j)(dTm

ni21, j
Mm11/2

ni, j ; 2[i(Dr)2 Du/4][(Dm11
ni, j 1 Dm

ni, j)(dTm11
ni,j 1 dTm

ni, j)],
1 dTm

ni, j)](i 2 As) Du/4,
Rm11/2

ni,j ; 2i(Dr)2 Du(2 Dt)21[C(rm11
ni, j 1 rm

ni, j)(dTm11
ni, j 2 dTm

ni, j)
Dm

ni, j ; c1,ni, j 1 2c2,ni, jTm
ni, j 1 3c3,ni, j(Tm

ni, j)2,
1 (Vm11

ni, j dTm11
ni,j 1 Vm

ni, jdTm
ni, j)(Tm11

ni, j 2 Tm
ni, j)],

Um
ni, j ; (­kn/­Tn)m

i, j , and Vm
ni, j ; C(­rn/­Tn)m

i, j ;
dNm

ni, j1 ; [(Um
ni, j21 1 Um

ni, j)(Tm
ni, j21 2 Tm

ni, j)(dTm
ni, j21

2km
nI11, j(dTm

nI21, j 2 4dTm
nI, j 1 3dTm

nI11, j)
1 dTm

ni, j)]/4i Du,
5 h2 Dr[h 1 4sb(dTm

nI11, j)3] 1 Um
nI11, j(Tm

nI21, j
dNm

ni, j2 ; [(Um
ni11, j 1 Um

ni, j)(Tm
ni11, j 2 Tm

ni, j)(dTm
ni11, j

2 4Tm
nI, j 1 Tm

nI11, j)jdTm
nI11, j ,

1 dTm
ni, j)](i 1 As) Du/4,

j 5 1, 2, 3, ..., J ⇔ 0; m 5 1, 2, 3, ..., M;

n 5 0, 1, 2, 3, ... ; (21)

dT 0
ni, j 5 0, i 5 1, 2, 3, ..., I 1 1;

j 5 1, 2, 3, ..., J ⇔ 0; n 5 0, 1, 2, 3, .... (22)

Equations (20)–(22) can be written in the matrix form,

am,m11
n ? dTm11

n 1 bm,m11
n ? dTm

n 5 dm,m11
n ? dcn ,

(23)
m 5 0, 1, 2, 3, ..., M,

where am,m11
n and bm,m11

n are the known (IJ 1 1) 3 (IJ 1
1) matrices, dTn’s are the unknown (IJ 1 1)-dimensional
vectors, dm,m11

n is the known (IJ 1 1) 3 3(IJ 1 1) matrix,
and dcn is the unknown 3(IJ 1 1)-dimensional vector ar-
ranged in the form (dc1,n , dc2,n , dc3,n)T.

Upon collecting all of the equations in (23) correspond-
FIG. 7. Exact values of c2(x) for Example 1. ing to the spatial data points xp , p 5 1, 2, 3, ..., P, where
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FIG. 9. Computed values of c3(x) for Example 1. FIG. 10. Exact values of c3(x) for Example 1.

the surface temperature measurements are performed, and To obtain an overdetermined system for dcn , one can
replacing T y

n11i, j(xp , ty) by their corresponding measured choose Y large enough and cascade Y of the underdeter-
values TS(xp , ty), one obtains a compact linear algebraic mined system of (24) into a single system to acquire
system for each y,

Dn ? dcn 5 Sn , n 5 0, 1, 2, 3, ..., (25)
Dy

n ? dcn 5 Sy
n , y 5 1, 2, 3, ..., Y; n 5 0, 1, 2, 3, ..., (24)

where Dn is the known YP 3 3(IJ 1 1) full matrix,
Sn is the known YP-dimensional vector, and YP $where Dy

n is the known P 3 3(IJ 1 1) full matrix and Sy
n

is the known P-dimensional vector. 3(IJ 1 1).

FIG. 11. Computed values of c1(x) for Example 2.
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FIG. 12. Exact values of c1(x) for Example 2.

Unfortunately, Dn is rectangular and DT
n ? Dn is highly Here, in essence, each cycle of GPST iteration con-

ill-conditioned; hence Tikhonov regularization method sists of a direct half-cycle in which Eqs. (16)–(19) are
[19] is used to overcome this difficulty; i.e., instead of solv- solved and an inverse half-cycle in which Eqs. (26)
ing (25), one solves the regularized system, and (7) are solved. Simple computational complexity

analysis, as before, can show that the bottle neck in(DT
n ? Dn 1 lI) ? dcn 5 DT

n ? Sn , n 5 0, 1, 2, 3, ..., (26)
computation lies mainly in the inverse half-cycle of
GPST iteration.where l is the regularization parameter.

FIG. 13. Computed values of c2(x) for Example 2.
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FIG. 14. Exact values of c2(x) for Example 2.

A MULTILEVEL GRID METHOD the standard GPST algorithm. Let G0 be the coarsest grid
and a sequence of successively finer grids G0 , G1 , G2

To improve the efficiency and stability of the standard , ? ? ? , GF be constructed by dividing each zone element
GPST inversion algorithm, a multilevel grid method sim- of the next coarser grid. Here the multilevel grid method
pler than that of Chen and Zhang [8] and Chen [9], but requires that T m11

ni, j of (16)–(19) is solved on GF for all
iterations. It also requires dcn of (26) to be solved on G0similar to that of Zhu and Chen [20] is incorporated into

FIG. 15. Computed values of c3(x) for Example 2.
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FIG. 16. Exact values of c3(x) for Example 2.

for the first few iterations; then its numerical values are parallel or on a single processor sequentially. Moreover,
this parallelism can be incorporated directly into the multi-interpolated into G1 as the initial guess for the next few

iterations. Next, the numerical values of dcn on G1 are level grid method with great ease. The efficiency is greatly
improved here because each subsystem is much smallerinterpolated into G2 as the initial guess for the next few

iterations. One continues this process until the final numer- than the original system.
ical values of dcn are calculated on the finest grid GF . In

NUMERICAL SIMULATIONSthis way, the number of iterations on GF for solving dcn is
greatly reduced. Since the total computational cost for

In order to test the feasibility and capability of this new
solving dcn on all coarser grids is minuscule in comparison

GPST inversion algorithm without real measurement data,
with that for one iteration on GF , the efficiency of the

the following numerical simulation procedure is carried
standard GPST inversion algorithm is greatly improved.

out. First, a set hc*l (x)j, l 5 1, 2, 3, is chosen as the suppos-
Furthermore, because of the systematic improvement of

edly correct values of hcl(x)j, l 5 1, 2, 3. Then Eqs. (2)–(5)
the initial guesses, the stability is also greatly ameliorated.

are solved to get the supposedly measured surface temper-
ature TS(x, t). Next, these computer-generated data are

PARAMETER-SPACE PARALLELISM used in the inversion algorithm to obtain a set of approxi-
mate parameters hcl,F(x)j, l 5 1, 2, 3. The magnitude ofHere the parameter-space parallelism first requires the
the norms ic*l 2 cl,Fi, l 5 1, 2, 3, can be used as a criterionunknown parameter correction vector dcn to be decom-
for evaluating the performance of this improved GPSTposed into three subvectors dc1,n , dc2,n , and dc3,n . Then
inversion algorithm. Our tests have shown that even withthese three subvectors can be obtained independently by
a random error of 1% in the input data the results are stillsolving three uncoupled subsystems,
very good.

Many examples are used in our numerical simulations(DT
l,n ? Dl,n 1 llI) ? dcl,n 5 DT

l,n ? Sn ,
(27) and it is found that this new GPST inversion algorithm

l 5 1, 2, 3; n 5 0, 1, 2, 3, ..., produces very good results for all of them. Due to the
large amount of graphs needed to present the numerical
results of just one example, only the results of two typicalwhere Dn ; (D1,n , D2,n , D3,n) and DT

l,n ? Dl,n’s are symmetric
(IJ 1 1)-dimensional matrices. examples with the same initial guesses are presented here

in Figs. 2–10 (Example 1) and Figs. 11–16 (Example 2).It is clear that every subsystem of (27) can be solved
separately, either on an individual cluster of processors in For easy estimation of errors, a typical plot (Example 2)
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multiprocessor computer, the estimated computer time
would be approximately less than 3 min on a cluster of
three similar workstations in parallel. On the other hand,
when the standard GPST is used for the same inverse
problem, 350 min of computer time is needed on the same
workstation. Hence the efficiency of the standard GPST
inversion algorithm is improved at least by a factor of 100
on a multiprocessor computer and this is quite remarkable.

CONCLUSIONS

The capacity of this GPST inversion algorithm with the
multilevel grid and the parameter-space parallelism for
solving three-parameter 2D inverse source problem of a
nonlinear diffusion equation has been clearly demon-
strated in our numerical simulations. The excellent perfor-
mance for this simple prototype of inversion code has
definitely encouraged us to develop a similar 3D code with
an irregular spherical grid system for solving the ‘‘real’’
inverse source problem of the nonlinear diffusion equation
in the microwave heating.
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